TOTAL POWER INT'L

10 Watts 2:1 Wide Input Range DC/DC Converters

Single and Dual Outputs

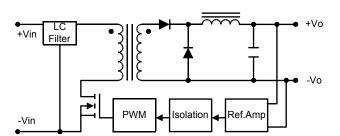
Key Features

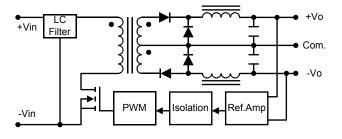
- High Efficiency up to 83%
- 2:1 Input Range
- I/O Isolation 1500VDC
- SMT Technology
- Short Circuit Protection
- Industry Standard Pinout
- EMI Complies With EN55022 Class A
- Six-Side Shielded Case
- MTBF > 700,000 Hours

MKW1000 series of DC/DC converters, comprising 24 different models, is designed for a wide range of applications including data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

Packing up to 10W of power into a 2 x 1 x 0.4 inch package, with efficiencies as high as 83%, the MKW1000 has wide input ranges of 9–18VDC, 18–36VDC and 36–75VDC and is available in output voltages of 3.3V, 5V, 12V, 15V, 24V, \pm 5V, \pm 12V and \pm 15V.

Other feathers include continuous short circuit protection, six-side shielded case and EN55022 level A conducted noise compliance minimize design-in time, cost and eliminate the need for external components.





Block Diagram

Single Output

Dual Output

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current		Input Current		Reflected Ripple Current	Efficiency
			Max.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA (Typ.)	mA (Typ.)	mA (Typ.)	% (Тур.)
MKW1021		3.3	2400	120	917			72
MKW1022		5	2000	100	1082			77
MKW1023		12	830	42	1038			80
MKW1024	12	<i>15</i>	670	34	1047	20	50	80
MKW1025	(9~18)	24	416	21	1027	30	50	81
MKW1026		±5	±1000	±50	1068			<i>78</i>
MKW1027		±12	±416	±21	1027			81
MKW1028		±15	±333	±17	1041			80
MKW1031		3.3	2400	120	434			76
MKW1032		5	2000	100	534		25	<i>78</i>
MKW1033		12	830	42	506			82
MKW1034	24	<i>15</i>	670	34	511	20		82
MKW1035	(18~36)	24	416	21	501	20		83
MKW1036		±5	±1000	±50	521			80
MKW1037		±12	±416	±21	507			82
MKW1038		±15	±333	±17	507			82
MKW1041		3.3	2400	120	217			76
MKW1042		5	2000	100	260			80
MKW1043		12	830	42	253	10		82
MKW1044	48	<i>15</i>	670	34	252		12	83
MKW1045	(36 ~ 75)	24	416	21	251		12	83
MKW1046		±5	±1000	±50	257			81
MKW1047		±12	±416	±21	251			83
MKW1048		±15	±333	±17	251			83

Absolute Maximum Ratings

Parame	Min.	Мах.	Unit	
Input Surge Voltage (1000 mS)	12VDC Input Models	-0.7	25	VDC
	24VDC Input Models	-0.7	50	VDC
	48VDC Input Models	-0.7	100	VDC
Lead Temperature (1.5mm		260	${\mathscr C}$	
Internal Power Dissipation		5,000	mW	

Exceeding these values can damage the module. These are not continuous operating ratings.

Environmental Specifications

Parameter	Conditions	Min.	Мах.	Unit		
Operating Temperature	Ambient	-40	+71	${\mathscr C}$		
Operating Temperature	Case	-40	+90	${\mathscr C}$		
Storage Temperature		-40	+125	${\mathscr C}$		
Humidity			95	%		
Cooling	Free-Air Convection					
Conducted EMI	EN55022 Class A					

Note:

- Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3. Ripple & Noise measurement bandwidth is 0-20 MHz
- 4. These power converters require a minimum output loading to maintain specified regulation.
- Operation under no-load conditions will not damage these devices; however they may not meet all listed specifications.
- 6. All DC/DC converters should be externally fused at the front end for protection.
- 7. Other input and output voltage may be available, please contact factory.
- 8. Specifications subject to change without notice.

Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit	
Start Voltage	12V Input Models	8	8.5	9		
	24V Input Models	<i>15</i>	17	18		
	48V Input Models	30	33	36	VDC	
Under Voltage Shortdown	12V Input Models	7	8	8.5	VDC	
	24V Input Models	13	<i>15</i>	17		
	48V Input Models	25	29	34		
Reverse Polarity Input Current				2	А	
Short Circuit Input Power	All Models		3500	4500	mW	
Input Filter			Pi F	ilter		

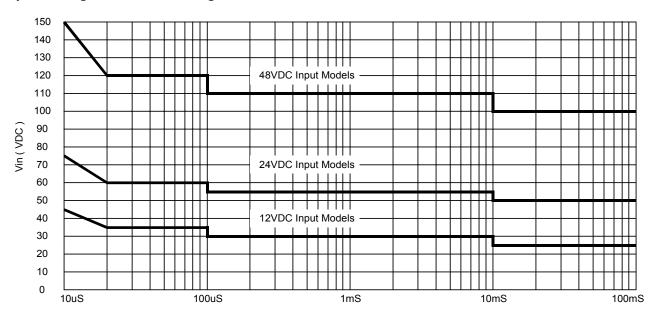
Output Specifications

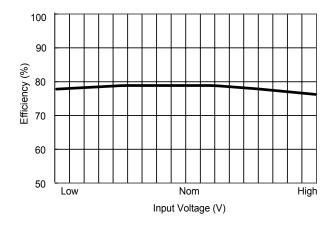
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy			±0.5	±1.0	%	
Output Voltage Balance	Dual Output Balance Load		±0.5	±2.0	%	
Line Regulation	Vin=Min. to Max.		±0.1	±0.3	%	
Load Regulation	Io=10% to 100%		±0.1	±0.5	%	
Ripple & Noise (20MHz)			50	<i>75</i>	mV P-P	
Ripple & Noise (20MHz)	Over Line,Load & Temp			100	mV P-P	
Ripple & Noise (20MHz)				15	mV rms.	
Over Power Protection		120			%	
Transient Recovery Time	25% Load Step Change		150	300	uS	
Transient Response Deviation	25% Load Step Change		±2	±4	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Output Short Circuit	Continuous					

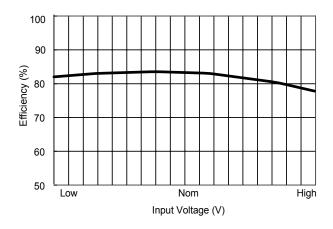
General Specifications

Parameter	Conditions	Min.	Тур.	Мах.	Unit
Isolation Voltage	60 Seconds	1500			VDC
Isolation Test Voltage	Flash Tested for 1 Seconds	1650			VDC
Isolation Resistance	500VDC	1000			MΩ
Isolation Capacitance	100KHz,1V		150	470	pF
Switching Frequency		260	300	340	KHz
MTBF	MIL-HDBK-217F @ 25°C, Ground Benign	700			K Hours

Capacitive Load

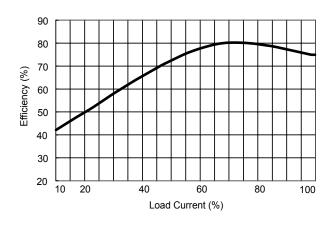

Models by Vout	3.3V	5V	12V	15V	24V	±5V #	±12V #	±15V #	Unit
Maximum Capacitive Load	2200	2200	2200	2200	2200	470	470	470	uF

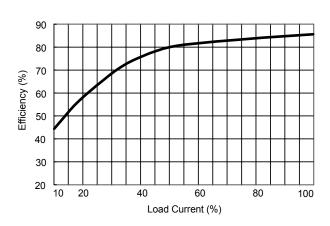

Note: # For each output .


Input Fuse Selection Guide

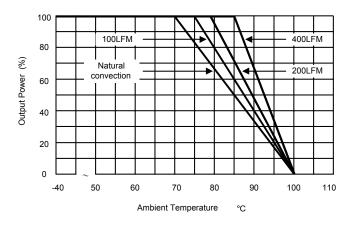
12V Input Models	24V Input Models	48V Input Models
3000mA Slow - Blow Type	1500mA Slow - Blow Type	750mA Slow - Blow Type

Input Voltage Transient Rating

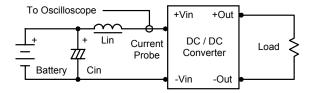




Efficiency vs Input Voltage (Single Output)


Efficiency vs Input Voltage (Dual Output)

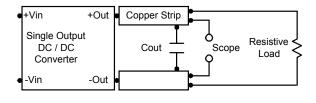
Efficiency vs Output Load (Single Output)

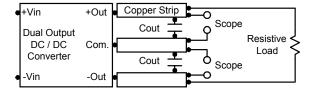

Efficiency vs Output Load (Dual Output)

Derating Curve

Test Configurations

Input Reflected-Ripple Current Test Setup


Input reflected—ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0 Ω at 100 KHz) to simulate source impedance.


Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0–500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0–20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Design & Feature Considerations

Maximum Capacitive Load

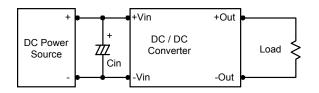
The MKW1000 series has limitation of maximum connected capacitance at the output.

The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.

For optimum performance we recommend 470uF maximum capacitive load for dual outputs and 2200uF capacitive load for single outputs.

The maximum capacitance can be found in the data.

Overcurrent Protection


To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current–limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

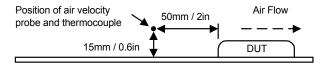
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

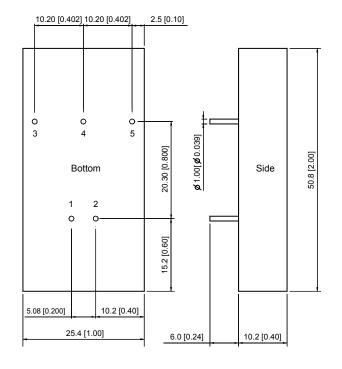
In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 15uF for the 12V input devices and a 4.7uF for the 24V and 48V devices.

Output Ripple Reduction

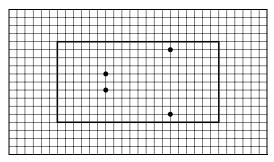
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.

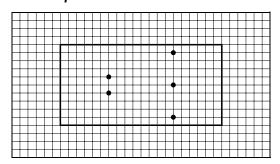

To reduce output ripple, it is recommended to use $3.9 \mathrm{uF}$ capacitors at the output.


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.

The derating curves are determined from measurements obtained in an experimental apparatus.


Mechanical Data


Tolerance Millimeters Inches .X±0.25 .XX±0.01 .XX±0.25 .XXX±0.01 Pin ±0.05 ±0.002

Connecting Pin Patterns Top View (2.54 mm / 0.1 inch grids)

Single Output

Dual Output

Pin Connections

Pin	Single Output	Dual Output
1	+Vin	+Vin
2	-Vin	-Vin
3	+Vout	+Vout
4	No Pin	Common
5	-Vout	-Vout

Physical Characteristics

50.8×25.4×10.2 mm Case Size 2.0×1.0×0.4 inches

Case Material : Metal With Non-Conductive Baseplate

Weight : 32g

Flammability : UL94V-0

Units are encapsulated in a low thermal resistance molding compound which has excellent chemical resistance and electrical properties in high humidity environment and over a wide operating temperature range.
The encapsulant and outer shell of the unit have UL94V-0 ratings. The leads are golden plated for better soldering.